A Self-organizing NARX Network and its Application to Prediction of Chaotic Time Series

نویسندگان

  • Guilherme de A. Barreto
  • Aluizio F. R. Araujo
چکیده

This paper introduces the concept of dynamic embedding manifold (DEM), which allows the Kohonen self-organizing map (SOM) to learn dynamic, nonlinear input-ouput mappings. The combination of the DEM concept with the SOM results in a new modelling technique that we called Vector-Quantized Temporal Associative Memory (VQTAM). We use VQTAM to propose an unsupervised neural algorithm called Self-Organizing N A R X (SONARX) network. The SONARX network is evaluated on the problem of modeling and prediction of three chaotic time series and compared with MLP, RBF and autoregressive (AR) models. Its is shown that SONARX exhibits similar performance when compared to MLP and RBF, while producing much better results than the AR model. The influence of the number of neurons, the memory order, the number of training epochs and the size of the training set in the final prediction error is also evaluated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Prediction of Chaotic Time Series with NARX Recurrent Dynamic Neural Networks

The problem of chaotic time series prediction is studied in various disciplines now including engineering, medical and econometric applications. Chaotic time series are the output of a deterministic system with positive Liapunov exponent. A time series prediction is a suitable application for a neuronal network predictor. The NN approach to time series prediction is non-parametric, in the sense...

متن کامل

The use of NARX Neural Networks to predict Chaotic Time Series

The prediction of chaotic time series with neural networks is a traditional practical problem of dynamic systems. This paper is not intended for proposing a new model or a new methodology, but to study carefully and thoroughly several aspects of a model on which there are no enough communicated experimental data, as well as to derive conclusions that would be of interest. The recurrent neural n...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

Sunspot Forecasting by Using Chaotic Time-series Analysis and NARX Network

Chaotic time-series is a dynamic nonlinear system whose features can not be fully reflected by Linear Regression Model or Static Neural Network. While Nonlinear Autoregressive with eXogenous input includes feedback of network output, therefore, it can better reflect the system’s dynamic feature. Take annual active times of sunspot as an example, after verifying the chaos of sunspot time-series ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004